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I. INTRODUCTION

Management plans for renewable resources will not be
effective unless they reflect both the economic realities faced by
the fishermen aFd also the vagaries of stock growth. Recent research
on the effect of stochastic environmental factors on stock growth,
such as currents, thermal isoclines or wind (talks given at the Tumna
Conference, Lake Arrowhead,.CA, September 1976) suggests that deter—
ministic models will not suffice to manage these fesources: When
stock growth varies in a probabilistieﬂfhshion, deterministic concepts
such as "maximum sustained yield" lnse meaning.,;i-:“.

Fortunately, the mathematics exists to determine optimal
policies for stochastic harvesting models (see Jacquette 1972, 1974;
Reed i974, 1975; Mendelssohn and Sobel 19775F » '.The most complete
treatment i; in Mendelssohn and Sobel (977}, - and the purpose of
this paper is to extend their results to include costs due to
fluctuations in harvest size, called smoothing costs.

For stochastlc versions of many of the standard production
models, with linear (discounted) costs, an optimal policy in each
period t is described by a "hase stock size" xi. If the stock size
at the beginning of the period is greater than xz, then it is optimal
to harvest to «°. Otherwise it is optimal not to harvest. This

t

policy is summarized in Table 1.

Stock size at beginning Optimal harvest Stock size at end
of period size of period
X > xo X - xo xo
t t t
X j_xz 0 x
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As the number oflperiods in the planning horizon tends to

infinity, the sequence of xz

's tends to a single base stock size x_,
which describes an optimal policy in each period in the infinite
horizon modelr

It is curious that a similar idea of managing for stock
size rather than catch size when growth is stochastic has arisen
from the practical experience of several people involved in fisheries
research (see Gulland and Boerema 1973 or Radovich 1975). Hanaging

for stock size probably implies that an independent estimate of stock
size is available, (which 1s trﬁe for many:coa;tal and demersal
fisheries) and will probably delineate where fhe results we present
will be useful.

) Fet us follow what might happen when following a base stock
policy over an infinite planning horizon. Stock size each year is
being kept as close to x° as possible. However, catch size is
fluctuating, the amount of fluctuation depending on the variances of
the random elements and also on how much the random elements affect
the growth of the stock. Downward fluctuations in the harvest may
cause economic hardship in the fishery due to insufficient allowable
catch to insure everyone a reasonable "profit." Upward fluctuations
in the catch may cause the fishermen to "gear up," which will find
them in debt in later periods when the catch quota is lowered. The
problem is*to manage around the base stock size in a manner that

reflects the costs due to fluctuations in catch, which we call

smoothing costs.
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Suppose there igfa cost (real or subjective) to an increase
in the allowable catch, giﬁén by Yy for each unit of increase. Similarly,
suppose there is a cost € for each unit of decrease in the catch size
between periodg. Let z, be the catch in period t and z, the catch

1
in period t-1. Then the net benefit of z, is:

)
- - - - <
Pz ez y-2) Ze T ZFen1
1P° Ze . . ' Ze T %1 (L.1)
Pzt (2 -z ) Ze Z %1

In the literature on inventory and production management,
cost structures such as equation (1.1) are analyzed under titles like
"Proéﬁction models with smoothing costs." The similarities between
harvesting models and inventory models has been noted elsewhere

(Mendelssohn and Sobel 1977), .. and the results presented here can

be seen to be "mirror images' of results in Beckmann (1961) and Sobel

(1969, 1971).
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Section II fdrﬁally describes the model to be analyzed.

Section IIT describes the results for a finite planning horizon.
Section IV extends these results to an infinite planning horizon;
Section Vv disc?sses possible extensions of the results. Only the
theorems are presented in the main body of the paper. ‘The proofs
can be found in the appendix.

For a real-valued function £ that maps a subset of R into
R, fl denotes the derivative of the function. If a real-valued
function h maps a sﬁé;;t of B into‘ﬁ,"htll denotes the partial
derivative with respect to the first argument, and h[zl the partial

derivative with respect to the second argument.

IT. THE MODEL

The resource is being managed for a planning horizon of T
periods, 0 < T < ». The periods are subscripted by t =1, 2, ..., T
or alternatively by n = T -~ t + 1, the number of periods remaining
in the planning horizon. At the beginning of each period t, an
initial stock size x, is observed, a harvest of size z, is taken
during period t, and a stock size Y is left at the end of the period
after harvesting has ceased. The stock size at the beginning of
peried t + 1, X 4110 is a random function of the stock size at the end
of period t and an exogenous random variable; i.e.

1

o1 = SIYs Dl
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where s[yt, Dt] is the "transition function" and Dl’ Dy, ..o, D, are
independent, identically diétributed random variables, distributed
as the generic random variable D. The proofs do not depend on D
being a scalar random variable; thus Dy, Dyy oy Df can be a
sequence of independent, identically distributed random vectors,
distributed as the generic random vector D. This implies that the
transition function is capable of including any number of environment

variables.

For eacﬁ‘fixed realization hf_the ;andom variable Dt

(denoted by d), s+, d] is assumed to be concave and continuous.

EE— w

Many of the standard production models satisfy these assumptions.

A harvest of Z, =X - ¥, produces a return of G(x ~ y). If z,
is gfeater than Z,_1» there is a cost of vy - (zt - zt—l)’ Yy > 0.
. . - > 0.
Iif z, is less than z, 1 there is a cost € (zt_1 zt), >0
The total one period return in period t is:
¢ s . _ >
G(z) - v * (zp -z 4) 2r 7 %1
— - — <
1 6Cz) g0 (2 ) - 2) Ze S %1
| 6z e T Fe1

t-1
and this return is discounted by a factor &~ ~, 0 < a < 1.
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The model as described is a two state model. At the
beginning of each period, an initial population size x is observed,
and a harvest size z from the previous peried also is known. If
(x, 2z} is the J,observed state in period t, then Beckmann (1961) shows
that equation (2.1) can be rewritten as:

G(z,) - e (z~2)=-c- |z, - zi (2.2a)

t

= G(x - yt) - e . (z— (',;c —'yt)) -c " Ix- Ve = z| {2.2b)

where e = -(—Y-;—e) and c = —(-Y-;—El. The dynamic optimization problem

is to choose a feasible sequence {yt} that:

T
maximizes E z at_lg(x, ¥y Z)
t=1 (2.3)
subject to Q_<_ Ve ixt; 0 < Z,. f_xt; X4 T S[Yt, Dt]
Xeo Ypo Zpo 20

and g(+, +,+) is given by equation (2.2b). It follows from Sobel
(1969) that if an optimal policy exist, it must be the seolution to

the following system of recursive equations:

(wvhere n = the number of periods remaining, is the subscript).

. £ (+,0) 20 (2.4)

= Sup — - - — — »
fn(x, z) 0<y<x {Jn(x, y-ec*lx-y-z|l -e z}

where Jn(x, y) G(x - yv) + OtE{fn_l(S[Y, dl, x - Y)}
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The problem described by the dynaﬁic program (2.4) differs
from the typical bioeconomic model (see Clark 1976) in three important
ways. First, a state (x, z) in any future period is never reached
with certainty,lbut only with a given probability, unless x = 0 or
y = 0. Therefore the phase-plane diagrams used to describe optimal
policies (as in Clark 1976) have no meaning in this coﬁtext. Instead,
it is necessary to define, for each period n, a function Ah(x, z),
called the "policy functiom.” The function Ah(x, z) describes a-
decision y. for each (x, z) sucﬁ that if (x, z) were the observed
state in period n, then choosing y A (x, z) and following the
policy described by A__ ( ), A 2( ) JN 1( ) maximizes the expected
total return from period n to the end of the planning horizon.

Sécond, the decision variable is stock size, not fishing
effort. Stock size is a function of the resource, effort a function
of the industry that utilizes the resource. Moreﬁver, when effort is
the decision variable, the decision each period has no effect on the
range ofl feasible decisions in the following periods. When population
size is the decision, the stock size the next period, a random variable,
constrains the decision in that period. Therefore the decision this

period carries over into the future.
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Third, equilibrium points, or maximum sustained yield
points, and their properties, which are the main interest in
deterministic analysis, are of little interest in a stochastic model.
Rather, the interest becomes to describe properties of the policy
An(x, z), thaty lend insight into how a harvest varies in time (i.e.,
as n varies) and in state (i.e., as x or z vary), and hopefully in
order to increase computational efficiency. This is the purpose of
the next three sections. |

I1I. THE FINITE HORIZON MODEL

In this section, it is assumed that the planning horizon
extends over a finite number of periods. The single-period return
function, given by equation (2.2b) and fhe transition function
s{*, d] are both concave, and have at least one-sided derivatives.
Analysis of the model would be facilitated if these properties are

also true for Jn(x, v) and fn(x, z) in each pericd.

Lemma 1 For each n:
(i) Jn(x, ¥) is concave and continuous on the set
C=1{(x, y): xeX; 0 <y < x}, and Jn(x, ¥y) —¢c * |jx -y —~ z]
is jointly concave in (x, y, z).
(ii) fn(x, z) is concave and continuous, fn(', z) is nondecreasing

and fn(x, *) is nonincreasing.

) O
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To describe an‘pptimal policy, we need to make assumptions
about G(z), the immediate return from a harvest of size z. The
following assumptions are discussed in Mendelssohn (1976) or
Mendelssohn aqd Sobel {1977):
(i) 6(x, y) is concave and'continuous on the set

C=1{(x, ): xe X; 0<y<x}

(3.1)
(ii) G(*, y) is nondecreasing
(i1d) G[Z](-J‘y) is nondecreasipg
(iv) G is nonnegative (uniformly bounded below) on C.
Further, consider the following two functions:
720 = sup {r: 3P 3 2 - es 02y <}
) : - (3.2)

;i(x) = sup {Y= JIE21 (x, v 2ec; 0<y < x}

Let us consider the meanings of these different definitions. yi(x)

is a feasible y for each x, such that if the harvest size is increased,
it is optimal to increase it to x - yi(x). Similarly, yi(x) is such
that if the harvest size decreases, it is optimal to decrease to

x - yi(x). It is shown in Mendelssohn (19765, or Mendelssohn and
Sobel (1977) that an optimal policy function An(x) for the problem
with no smoothing costs has the following properties:

d
< —
0 < dxAn(x) <1

1

This leads us to suspect that it might be true that, 0 < -C%Ey;(x) <1
for i = 1, 2. Theorem 1 is the main theorem of this paper. It states

that this conjecture is correct, and shows how this can be used to

describe an optimal policy function.
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Theorem 1 (a) Let G(x, y)','r the one period benefit from harvesting,

be given by equation (3.1). Then there exists two functions ytll'(x)

and yi(x), defined in equations (3.2) such that the value of an

optimal harvesting strategy is given by:

{ : 2
- . <
Jn(x, x) c z 'S yn(x)

J (x,yz(X))+C' (x—yz(X)—2)=x-z<y2(X)
fn(x’ z) = { n n n n

Jn(x, yi(x)) -c - (x -yxll(x) “z)ix-z >Y:;(K)

h

an optimal harvesting strategy is given by:

X !X <yr21(x)

yﬁ(x) tx-2 <y§(x);x3y§(x)

A (xy z) = ¢ 2 1

n X -2z 1y (x) <x-2<y (x)
n - ~’n

yi(x} tx -z > Yi(!ﬂ

“

Jn(x, X - z) :yi(x)f_x—zf_ytll(x) III

(b) Let An(x) be the policy function when vy, € = 0. Then,

under the assumptions of part (a), the following inequalities are true:

(1) x - Y260 £x = A () <x - y2 ()
(ii) 0 _<_Ar[ll](x, 2) <1

(110) -1 < Al x, 2) < 0

(iv) 0 < 52 () < 1
1’

(v) 0 < y, &)

| A

1
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*

Theorem 1 providés a welter of results at once. Figure 1
summarizes visually an optimal policy. The abscissa is the value of
x, the ordinate 1s the value of z. What is read off the graph is
the value of z{ = x - An(x, z), by finding the corresponding value
on the z-axis. The left-most dotted line shows the limits of the

constraint X, > z_. The middle dotted line is the policy

t
zZ=x - An(x),

A second way of summarizing an optiméi policy is given in
Table 2. fhe first column considers the value of the remaining
stock size if the old harvest were followed. The second column
gives the optimal harvest size, and the third column gives the

remaining stock size.

Stock size if Optimal Size of remaining
harvest unchanged harvest .stock
x -z < yi(x); x < yi(x) 0 x
x-z< yrzl(x); x > yi(X) X - yi(X) yi(X)
Y2 <x -z < yi0 z x -z
yi(x) <x -z X - yi(x) yi(x)

Consider each region. In region I, Jﬁzl(x, X) > - c.
In other words, it would be desirable to decrease the harvest
beyond zero. Since this isn't feasible, An(x, z) — x is an optimal
policy. 1In region II, either a decrease in harvest size is

absolutely necessary, due to the constraint x > 2z in which case

t’
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An(x, z) = yi(x) is optimal, or else at yi(x) the marginal gain from
decreasing the harvest size'just equals the marginal cost. In region
III, the marginal cost of any change in harvest size is greater than
the increase inyvalue. In region IV, yi(x) is the point where the
marginal increase in value due to an increase in harvest size just
equals the marginal change in the cost.

Clearly the choice of ¢ (respectively of ¥y, €) influences
an optimal policy to a large degree, as the width of region ITTwill
depend on these value;t In many fishgriés contexts, ¢ represents a
subjective weighting against undesirable eventé rather than a true
monetary cost. Therefore, care should be used when actually choosing
a value for c. For numerical problems, several values of c might be
tried: in order to see how sensitive an opﬁimal policy is to changes
in c¢. We conjecture, but have not proven, that the change in an
optimal policy is greater when changes are made in small values of c
than when changes are made in large values of c¢. The intuition behind
the conjecture is that as smoothing costs first enter the problem, an
optimal policy "jumps" to include these costs. But as c gets larger
and larger, an optimal policy becomes heavily weighted towards ﬁot
changing the allowable catch, and therefore changes in the value of

¢ should have little effect on an optimal policy.
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IV. INFINITE HORIZON MODEL

In this section, n, the number of periods remaining in
the planning horizon, approaches infinity. As in the base stock
size policy, i£ would be convenient if as n approaches infinity,
that an optimal policy approach a stationary policy, that is one
that doesn't depend on the period. If such limits exist, consider

the following five functions:

A(x, z) = lim A (x, z)
> n
yl(x) = 1im yi(x)
R n—)-m
(4.1)
2 . 2
vy (x) = lim yn(x)
n-row
f(x, z) = lim £_(x, z)
n-+m n
J(x, y) = lim Jn(x, y)

n >

Theorem 2 states conditions for which these limits exist,
and for which the functions described are the functions for the

infinite horizon problem.

Theorem 2. (a) Assume s[*, d] is nondecreasing for each fixed
value of d. Then:
1

yn+l

2
yn+l(x) >y

(x) > y_(x)

=2

(x)

O

An+l(x, z) z_An(x, z)

.fn+l(x, z) z_fn(x, z)

[2)

JV T e Y TIZ]‘"
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(b) Assume also that c, e are finite and that G(z) is bounded above

t-1 .
by a finite number M such that lim o M+>0. Then there exists

t>oo
functions A(x, z), yl(x), yz(x), f(x, 2), and J(x, y) defined in
equation (4.1; such that an optimal policy for the infinite

horizon problem is given by:

Region
s y 2
x: x <y (x) 1
y2G): x - 2 < ¥R (®); x> yA(®) 11
Alx, 2z) = 2 ) 1
X-~z: (&) <x-z<y (x I1T
{ y @ v () £x-z v
the value of an optimal policy is:
. ‘ Region
( J(x, ¥x) +ec * z I
2 2 - )
J(x,y(x)) +C'(x-y(x)—z) I
f(x, 2z) = 4
J(x, z) 1T
L J(x, yl(x)) -c * (x - yl(x) - z) IV

and the following inequalities are wvalid:

(1) x - yl(X) <x-A(X <x- YZ(X)
(i1) 0 < Al (x, 2) <1
(i) -1 < a¥lx, 2y <0

(iv) Oiyz (x) £1

W o<y <1
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The interpretation of theorem 2 1s essentially that of
theorem 1, so it will not bé repeated. Over an infinite horizon,
the problem reduces to one of calculating two functions, yl(x)
and yz(x), both of which have derivatives bounded between zero
and one. Sobel (1971) discusses how to take advantage of similar
structure in an optimal policy function in order to efficiently

calculate an optimal policy.

V. “DISCUSSION AND SUMMARY

We have seen that when smoothing costs are added to a
harvesting problem, a three region optimal policy arises. These
regiqps smooth out the fluctuations in the gatch while still being
concerned about effects to the stock. The exact balance that is
achieved will depend on the relative values of the smoothing costs
to the "market" value of the harvest.

Certain imﬁediate extensions suggest themselves. G(z)
and s[y, d] often are period dependent functions, reflecting
perhaps seasonal fluctuations in price or growth. Theorem 1l is
valid as stated as long as the assumptions are valid for each G,
and s_. However, theorem 2 is not necessarily valid as stated in

the nonstationary case.
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Also, for most fisheries, a more realistic description
of smoothing costs assumes that for a certain level of change,
there is no smoothing cost, and that the per unit cost decreases
as the change begins to get large. That is, some fluctuations
are too smalll to notice, and some are so large that the "damage"
has already been done, and the increased cost due to an even
larger change is minimal.

In practice, some if not all_of the functions will be
difficult to estimate. However, experience with and knowledge of
a fishery may make it possible for a ﬁanager to put approximate
bounds on the three regions. Certainly knowing the form of a
policy is a step towards obtaining methods to put numbers in that
form. It is hoped that this initial effort will stimulate such

applied research.
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. APPENDIX

It is convenient to prove lemma 1 and theorem 1 together,
and then to prove theorem 2 as an extension of the results of

theorem lf That will be our approach.

Proof of Lemma 1 and Theorem 3

At n = 1, the return is G(x~-y)-e* (z-(x-y)) -c* |x—y—z
‘which by the assumptiéns on G is jdiqtly céncave in (x, ¥, z). From
a theorem in Iglehart (1965), which he af;ributes to A. F. Veinott,
Jr. and is a generélization of a theoreﬁ due to Dantzig (1955), it
follows that fl(x,'z) is concave and (iEft}fcontinuous in (x, 2z).

. As an induction hypothesis, assume f., f

10 Eps eees fn—l are
concave and continuous, and that fn_l(-, z) is nondecreasing and
fn_l(x, *) is nonincreasing (which we will prove shortly). This

implies that aEfn_l(s[y, dl, x - y) is jointly concave in (x, y)

and that G(x ~y) —e(z - (x-y) -c * [x -y - zI + aEfn_l(s[y,zi],x-yL

is jointly concave in (%, y, z). Again, from the theorem in Iglehart,
it follows that fn(x, z) is jointly concave in {x, z). |

If the induction hypothesis is true for some n, then an
optimal y can be found by taking the partial derivative with respect
to y, and making it as close to zero as possible, subject to 0<y<x.

Suppose x — z z_yi(x). Then:

1

[

———y
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JIEZ](X, yi(x))ﬁf c =0

or else yi(x) = x. Thus, if the conditions defining region IV are
valid, then yi(x) is optimal.
Suppose x j_yi(x). Then, since z > 0, x - z < yi(x), so0

that the harvest must be decreased. Again,
[2] 2 -
Jn (x, yn(x)) 0

or else yi(x) = x, so that yi(x) is an optimal decision. If
‘x z.yi(x),_and x -z < yi(x), by the same reasoning, yi(x) again is
an optimal decision.

Suppose yﬁ(x) <x -2z j_yi(x). Then:

-c < Jiz](x, x-z)<e

-

At vy = x - z, the derivative is Jizl(x, X - 2). An increase in y
will decrease the value, i.e., Jiz](x, X-z+ 6)—Lc;§J£2](k, Xx-z)

and J[z]

n (x, x -z - 6)-c3:J£2](x, x - z) for § > 0, which implies

that x - z is an optimal decision. If the theorem is true in
period j, then:

]
J}l}(x, y?(x)) + c Region I + II

fj[l](x, z) = 1 J§l](x, X~ z) + [J}Z](x, x = z) |7 Region III

J}l](x, yfil(x)) - c Region IV

\
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[—(e + ¢) Region I + II
’ .
f:lj:z](x, z) = *_J:E ](x, X - 2z) - e Region ITI
Lc -e Region IV

which proves tgat fn(-, z) is nondecreasing and fn(x, *) is
non-increasing.

To see where we are, we have shown that Jl(x, y)-c* |x-y- z! +e

is concave in (x, y, 2), which implies an optimal policy giveﬁ in
part (a), which implies fl(x, z) is qqncave and continuous, and that
fl(-, z) is nondecreasing, fl(x,-) nonincreasing. Assqme.this for
fl, f2, ey fn—l' Then QEf -1 (s[y,.d], x - y) is jointly concave
in (x, v), J (x, y) —c [x - y - zl + e - z is jointly concave in
(x, ¥, z). Again, this implies an optimal policf given by part (a),
which in turn implies fn(x, z) 1is concave and continuous, fn(-, z)
is nondecreasing and fn(x,-) is nondecreasing, which are the desired

results.

Much of part (b) has already been proven. By the
definition of the four regions, in regions I, II, IV An(x, z)
does mot change with z, in region III the change is exactly equal
to the change in z. This proves (iii), -1 f_Aizl(x, z) < 0.

Note that claim (ii) implies eclaim (iv) and (v). To see this,
in region III it is already true that 0 f_Aill(x, z) < 1. If
this is true in all other regions, since An(x, z) will equal
either yi(x) or yi(x) in these regions, (ii) must imply (iv)

and (v).
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At periecd 1:

Region
[0 1
1] I
f{l](x, z) = 9
' 0 III
Y . Iv

because f{ll (x, ‘z) = G'(x— A (x, z)) te(dHc+ [—G’(x-Al(x, z)) -e(Pec ]+=0

and
[ (e + @) 1
-(e + c) ' . 11
f][_2] (x, z) - 4
-¢° (x - Al(x)) - e ITI
lc-e Iv
Assume for periods 1, 2, ..., n-1 fél] is zero. To show

[1]

this implies f is zero, consider the region II case first.

Then:

f1[11] (x, 2) = G'(x-An(x, z)) +e+tc+ [—G'(x-An(x, z))
-e- c+0LE{ (1 ]( [A (x, z), d]) [1] [An(x, z), d]
[2] (S[A (x, 2), d], x - y) }]+

e[2] (s[A x, 2), 1, % - 3)

aE{fr[::{ (s [An(x, z),d]l, = - y) S[l:l [An(x’ z), d]}

0 by the induction hypothesis and similarly

for the other regions. Likewise

Sy
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(& + ¢) ) I +II.
fiZ](x, z) = -Jﬁz](x, X-2z)-e IXT

c-=c Iv

Therefore: !

12,y = 6 -y - e-aE{f_iﬂ(s[y, al, x - y)}

which is increasing in x. This implies:
An(x, z) j_An(x', z) for x° > x.
. S AR B T

Put the problem in terms of x and the decision z = x - y. Then:

HIZ](X, z) = G (2) + e + aE{fgfi(s[x -z, d], z)}
which again is nondecreasing in x. This implies that:

x - Ah(x, z) < x” - An(x', z) for x° > x.

Together the two inequalities imply

0 f_An(x’, z) - An(x, z) <x” - x for x7 > x.
a4 {1] .
which implies 0 f_An (x, z) < 1.
The final resuvlt is that:
X - Yl(x) <x- A‘(:c) <x- YZ(X)
n — n - n
or equivalently:

Y20 < A_(x) < yhGo).

At period n:

st2 (x, An(x)) = —G‘(x - An(x)) - e+aE{fEl_2_]]_(s[An(x), a1, X"An'("))}
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Assume as an induction hypothesis that:

oe{ £l 23 (s1a (%), a1, x-A () - £ [sla ), a1)s M A (), 4]

n-1 n- n n-1 n n*?

< |el (A.1)
l-
where fn-l(x) is the value function without amoothing costs. The
inequality implies the result. However, the inequality is trivially
true in period one. From the definition of fizl(x, z), the result

in period n implies Inequality (A.l) for ﬁn(x, z) which completes

the proof.

Proof of Theorem 2

. We assume the set X of feasible population sizes has a

finite least upper bound.

Part (a). For fixed z:
1
f{ ](x, z) - fgl](x, z) = fill(x, z) >0

f{z](x, z) - f£2](x, z) = f{zl(x, z) <0

As an induction hypothesis, assume for some n, that:

([1]
8

G2 2 e, 2, P, 2 < P, o

Then:
[2]

Tt & ¥) - JrEZ](x, y) =

[1]
aB{(£, " (sly, 41, x = y) - £l (sly, a1, x - y0)s[ My, a)

2
- 16y, a1 x -9 - ey, a1, x - 9 >0

e




25

This implies that: o

An(x, z) > An_l(x, z)

From the definition of Ah(x, z), Ah—l(x’ z) given in theorem 1,
Ah(x, z) z_An_l(x, z) must imply:
]-
[1] [1]
£ 2) > £ 7 (x, 2)

[2]

106 2 < £ (x, 2)

£

which completes the induction.

'

Part (b). We make the further assumption that 0<a<1.

We have proven in part (a) that:

An+1(x, Z) ‘?"An(x’ Z)

However, since the set X is bounded below by zero and has a finite
upper bound by assumption, this implies that'{Ah(x, z)} approaches
a limit A(x, z). Moreover, since the one~-period return is finite
and bounded,

o gtx, v, 2) » 0
as t * infinity, where g(x, y, z) is given by:

-G(x -y)-¢ - |x -y - z] +e * z.

It follows from Denardo (1967) that {fn} mst converge to a limit

(A.6)

f(x, z) as n approaches infinity. Since both sequences {fn(x, z)} -

and {Ah(X’ z)} converge, of necessity, the sequence {Jn(x, v)} must

T

converge to a limit J(x, y).
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The stationarity of J(x, y), £(x, 2z), and A(x, z) and the

concavity of J(x, y) and f(i, z) imply that:
ytll(x) >y (x) as n e

2@ By’ a5 0

which completes the proof of part (b).



Figure l.-—Tﬂis figure describes an optimal harvest for period n

for a concave return function G(x - y). See text for more details.



